Interpretability-Based Multimodal Convolutional Neural Networks for Skin Lesion Diagnosis

Skin lesion diagnosis is a key step for skin cancer screening, which requires high accuracy and interpretability. Though many computer-aided methods, especially deep learning methods, have made remarkable achievements in skin lesion diagnosis, their generalization and interpretability are still a challenge. To solve this issue, we propose an interpretability-based multimodal convolutional neural network (IM-CNN), which is a multiclass classification model with skin lesion images and metadata of patients as input for skin lesion diagnosis. The structure of IM-CNN consists of three main paths to deal with metadata, features extracted from segmented skin lesion with domain knowledge, and skin lesion images, respectively. We add interpretable visual modules to provide explanations for both images and metadata. In addition to area under the ROC curve (AUC), sensitivity, and specificity, we introduce a new indicator, an AUC curve with a sensitivity larger than 80% (AUC_SEN_80) for performance evaluation. Extensive experimental studies are conducted on the popular HAM10000 dataset, and the results indicate that the proposed model has overwhelming advantages compared with popular deep learning models, such as DenseNet, ResNet, and other state-of-the-art models for melanoma diagnosis. The proposed multimodal model also achieves on average 72% and 21% improvement in terms of sensitivity and AUC_SEN_80, respectively, compared with the single-modal model. The visual explanations can also help gain trust from dermatologists and realize man–machine collaborations, effectively reducing the limitation of black-box models in supporting medical decision making.

Decentralized Robust Portfolio Optimization Based on Cooperative-Competitive Multiagent Systems

This article addresses decentralized robust portfolio optimization based on multiagent systems. Decentralized robust portfolio optimization is first formulated as two distributed minimax optimization problems in a Markowitz return-risk framework. Cooperative-competitive multiagent systems are developed and applied for solving the formulated problems. The multiagent systems are shown to be able to reach consensuses in the expected stock prices and convergence in investment allocations through both intergroup and intragroup interactions. Experimental results of the multiagent systems with stock data from four major markets are elaborated to substantiate the efficacy of multiagent systems for decentralized robust portfolio optimization.

Variational Progressive-Transfer Network for Soft Sensing of Multirate Industrial Processes

Deep-learning-based soft sensors have been extensively developed for predicting key quality or performance variables in industrial processes. However, most approaches assume that data are uniformly sampled while the multiple variables are often acquired at different rates in practical processes. This article designed a progressive transfer strategy, based on which a variational progressive-transfer network (VPTN) method is proposed for the soft sensor development of industrial multirate processes. In VPTN, the multirate data are first separated into multiple data chunks where the variables within each chunk are acquired at a uniform rate. Then, a variational multichunk data modeling framework is developed to model the multiple chunks in a unified fashion through deep variational structures. The base models, including the unsupervised ones with only partial process variables and the supervised soft sensor model share a similar network structure, such that the subsequent transfer strategy can be readily implemented. Finally, a progressive transfer learning strategy is designed to transfer the model parameters from the fastest sampled data chunk to the slowest one in a progressive manner. Thus, the knowledge from various data chunks can be sequentially explored and transferred to enhance the performance of the terminal soft sensor model. Case studies on both a debutanizer column dataset and a real coal mill dataset in a thermal power plant validate the performance of the proposed method.

A Structure Constraint Matrix Factorization Framework for Human Behavior Segmentation

This article presents a structure constraint matrix factorization framework for different behavior segmentation of the human behavior sequential data. This framework is based on the structural information of the behavior continuity and the high similarity between neighboring frames. Due to the high similarity and high dimensionality of human behavior data, the high-precision segmentation of human behavior is hard to achieve from the perspective of application and academia. By making the behavior continuity hypothesis, first, the effective constraint regular terms are constructed. Subsequently, the clustering framework based on constrained non-negative matrix factorization is established. Finally, the segmentation result can be obtained by using the spectral clustering and graph segmentation algorithm. For illustration, the proposed framework is applied to the Weiz dataset, Keck dataset, mo_86 dataset, and mo_86_9 dataset. Empirical experiments on several public human behavior datasets demonstrate that the structure constraint matrix factorization framework can automatically segment human behavior sequences. Compared to the classical algorithm, the proposed framework can ensure consistent segmentation of sequential points within behavior actions and provide better performance in accuracy.

Autoweighted Multiview Feature Selection With Graph Optimization

In this article, we focus on the unsupervised multiview feature selection, which tries to handle high-dimensional data in the field of multiview learning. Although some graph-based methods have achieved satisfactory performance, they ignore the underlying data structure across different views. Besides, their predefined Laplacian graphs are sensitive to the noises in the original data space and fail to obtain the optimal neighbor assignment. To address the above problems, we propose a novel unsupervised multiview feature selection model based on graph learning, and the contributions are three-fold: 1) during the feature selection procedure, the consensus similarity graph shared by different views is learned. Therefore, the proposed model can reveal the data relationship from the feature subset; 2) a reasonable rank constraint is added to optimize the similarity matrix to obtain more accurate information; and 3) an autoweighted framework is presented to assign view weights adaptively, and an effective alternative iterative algorithm is proposed to optimize the problem. Experiments on various datasets demonstrate the superiority of the proposed method compared to the state-of-the-art methods.

Observer-Based Event-Triggered Containment Control for MASs Under DoS Attacks

This article studies the observer-based event-triggered containment control problem for linear multiagent systems (MASs) under denial-of-service (DoS) attacks. In order to deal with situations where MASs states are unmeasurable, an improved separation method-based observer design method with less conservativeness is proposed to estimate MASs states. To save communication resources and achieve the containment control objective, a novel observer-based event-triggered containment controller design method based on observer states is proposed for MASs under the influence of DoS attacks, which can make the MASs resilient to DoS attacks. In addition, the Zeno behavior can be eliminated effectively by introducing a positive constant into the designed event-triggered mechanism. Finally, a practical example is presented to illustrate the effectiveness of the designed observer and the event-triggered containment controller.

Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-Objective Optimization of Industrial Copper Burdening System

The performance of decomposition-based algorithms is sensitive to the Pareto front shapes since their reference vectors preset in advance are not always adaptable to various problem characteristics with no a priori knowledge. For this issue, this article proposes an adaptive reference vector reinforcement learning (RVRL) approach to decomposition-based algorithms for industrial copper burdening optimization. The proposed approach involves two main operations, that is: 1) a reinforcement learning (RL) operation and 2) a reference point sampling operation. Given the fact that the states of reference vectors interact with the landscape environment (quite often), the RL operation treats the reference vector adaption process as an RL task, where each reference vector learns from the environmental feedback and selects optimal actions for gradually fitting the problem characteristics. Accordingly, the reference point sampling operation uses estimation-of-distribution learning models to sample new reference points. Finally, the resultant algorithm is applied to handle the proposed industrial copper burdening problem. For this problem, an adaptive penalty function and a soft constraint-based relaxing approach are used to handle complex constraints. Experimental results on both benchmark problems and real-world instances verify the competitiveness and effectiveness of the proposed algorithm.

Adaptive Fuzzy Output-Feedback Decentralized Control for Fractional-Order Nonlinear Large-Scale Systems

This article studies the adaptive fuzzy output-feedback decentralized control problem for the fractional-order nonlinear large-scale systems. Since the considered strict-feedback systems contain unknown nonlinear functions and unmeasurable states, the fuzzy-logic systems (FLSs) are used to model unknown fractional-order subsystems, and a fuzzy decentralized state observer is established to obtain the unavailable states. By introducing the dynamic surface control (DSC) design technique into the adaptive backstepping control algorithm and constructing the fractional-order Lyapunov functions, an adaptive fuzzy output-feedback decentralized control scheme is developed. It is proved that the decentralized controlled system is stable and that the tracking and observer errors are able to converge to a neighborhood of zero. A simulation example is given to confirm the validity of the proposed control scheme.

No Need for Landmarks: An Embodied Neural Controller for Robust Insect-Like Navigation Behaviors

Bayesian filters have been considered to help refine and develop theoretical views on spatial cell functions for self-localization. However, extending a Bayesian filter to reproduce insect-like navigation behaviors (e.g., home searching) remains an open and challenging problem. To address this problem, we propose an embodied neural controller for self-localization, foraging, backward homing (BH), and home searching of an advanced mobility sensor (AMOS)-driven insect-like robot. The controller, comprising a navigation module for the Bayesian self-localization and goal-directed control of AMOS and a locomotion module for coordinating the 18 joints of AMOS, leads to its robust insect-like navigation behaviors. As a result, the proposed controller enables AMOS to perform robust foraging, BH, and home searching against various levels of sensory noise, compared to conventional controllers. Its implementation relies only on self-localization and heading perception, rather than global positioning and landmark guidance. Interestingly, the proposed controller makes AMOS achieve spiral searching patterns comparable to those performed by real insects. We also demonstrated the performance of the controller for real-time indoor and outdoor navigation in a real insect-like robot without any landmark and cognitive map.

Accurate Power Sharing and Voltage Regulation for AC Microgrids: An Event-Triggered Coordinated Control Approach

The microgrid with the high proportion of renewable sources has become the trend of the future. However, the negative features, such as renewable energy perturbation, nonlinear counterpart, and so on, are prone to causing the low-power quality of the ac microgrid. To deal with these problems, this article proposes an event-triggered consensus control approach. First, the nonlinear state-space function regarding the ac microgrid is built, which is further transformed into the standard linear multiagent model by using the singular perturbation method. It provides indispensable preprocessing for the direct application of advanced linear control approaches. Then, based on this standard linear multiagent model, the secondary consensus approach with the leader is designed to compensate for the output voltage deviation and achieve accurate power sharing. In order to decrease the communication among various distributed generators, the event-triggered communication method is further proposed. Meanwhile, the Zeno behavior is avoided through the theoretical proof. Finally, simulation results are presented to demonstrate the effectiveness of the proposed approach.