Debiased Distributed Learning for Sparse Partial Linear Models in High Dimensions

Although various distributed machine learning schemes have been proposed recently for purely linear models and fully nonparametric models, little attention has been paid to distributed optimization for semi-parametric models with multiple structures (e.g. sparsity, linearity and nonlinearity). To address these issues, the current paper proposes a new communication-efficient distributed learning algorithm for sparse partially linear models with an increasing number of features. The proposed method is based on the classical divide and conquer strategy for handling big data and the computation on each subsample consists of a debiased estimation of the doubly regularized least squares approach. With the proposed method, we theoretically prove that our global parametric estimator can achieve the optimal parametric rate in our semi-parametric model given an appropriate partition on the total data. Specifically, the choice of data partition relies on the underlying smoothness of the nonparametric component, and it is adaptive to the sparsity parameter. Finally, some simulated experiments are carried out to illustrate the empirical performances of our debiased technique under the distributed setting.

Novel Min-Max Reformulations of Linear Inverse Problems

In this article, we dwell into the class of so-called ill-posed Linear Inverse Problems (LIP) which simply refer to the task of recovering the entire signal from its relatively few random linear measurements. Such problems arise in a variety of settings with applications ranging from medical image processing, recommender systems, etc. We propose a slightly generalized version of the error constrained linear inverse problem and obtain a novel and equivalent convex-concave min-max reformulation by providing an exposition to its convex geometry. Saddle points of the min-max problem are completely characterized in terms of a solution to the LIP, and vice versa. Applying simple saddle point seeking ascend-descent type algorithms to solve the min-max problems provides novel and simple algorithms to find a solution to the LIP. Moreover, the reformulation of an LIP as the min-max problem provided in this article is crucial in developing methods to solve the dictionary learning problem with almost sure recovery constraints.

Interpolating Predictors in High-Dimensional Factor Regression

This work studies finite-sample properties of the risk of the minimum-norm interpolating predictor in high-dimensional regression models. If the effective rank of the covariance matrix $\Sigma$ of the $p$ regression features is much larger than the sample size $n$, we show that the min-norm interpolating predictor is not desirable, as its risk approaches the risk of trivially predicting the response by 0. However, our detailed finite-sample analysis reveals, surprisingly, that this behavior is not present when the regression response and the features are jointly low-dimensional, following a widely used factor regression model. Within this popular model class, and when the effective rank of $\Sigma$ is smaller than $n$, while still allowing for $p \gg n$, both the bias and the variance terms of the excess risk can be controlled, and the risk of the minimum-norm interpolating predictor approaches optimal benchmarks. Moreover, through a detailed analysis of the bias term, we exhibit model classes under which our upper bound on the excess risk approaches zero, while the corresponding upper bound in the recent work arXiv:1906.11300 diverges. Furthermore, we show that the minimum-norm interpolating predictor analyzed under the factor regression model, despite being model-agnostic and devoid of tuning parameters, can have similar risk to predictors based on principal components regression and ridge regression, and can improve over LASSO based predictors, in the high-dimensional regime.

Structure Learning of Undirected Graphical Models for Count Data

Mainly motivated by the problem of modelling biological processes underlying the basic functions of a cell -that typically involve complex interactions between genes- we present a new algorithm, called PC-LPGM, for learning the structure of undirected graphical models over discrete variables. We prove theoretical consistency of PC-LPGM in the limit of infinite observations and discuss its robustness to model misspecification. To evaluate the performance of PC-LPGM in recovering the true structure of the graphs in situations where relatively moderate sample sizes are available, extensive simulation studies are conducted, that also allow to compare our proposal with its main competitors. A biological validation of the algorithm is presented through the analysis of two real data sets.

An Empirical Study of Bayesian Optimization: Acquisition Versus Partition

Bayesian optimization (BO) is a popular framework for black-box optimization. Two classes of BO approaches have shown promising empirical performance while providing strong theoretical guarantees. The first class optimizes an acquisition function to select points, which is typically computationally expensive and can only be done approximately. The second class of algorithms use systematic space partitioning, which is much cheaper computationally but the selection is typically less informed. This points to a potential trade-off between the computational complexity and empirical performance of these algorithms. The current literature, however, only provides a sparse sampling of empirical comparison points, giving little insight into this trade-off. The primary contribution of this work is to conduct a comprehensive, repeatable evaluation within a common software framework, which we provide as an open-source package. Our results give strong evidence about the relative performance of these methods and reveal a consistent top performer, even when accounting for overall computation time.

When random initializations help: a study of variational inference for community detection

Variational approximation has been widely used in large-scale Bayesian inference recently, the simplest kind of which involves imposing a mean field assumption to approximate complicated latent structures. Despite the computational scalability of mean field, theoretical studies of its loss function surface and the convergence behavior of iterative updates for optimizing the loss are far from complete. In this paper, we focus on the problem of community detection for a simple two-class Stochastic Blockmodel (SBM) with equal class sizes. Using batch co-ordinate ascent (BCAVI) for updates, we show different convergence behavior with respect to different initializations. When the parameters are known or estimated within a reasonable range and held fixed, we characterize conditions under which an initialization can converge to the ground truth. On the other hand, when the parameters need to be estimated iteratively, a random initialization will converge to an uninformative local optimum.

Aggregated Hold-Out

Aggregated hold-out (agghoo) is a method which averages learning rules selected by hold-out (that is, cross-validation with a single split). We provide the first theoretical guarantees on agghoo, ensuring that it can be used safely: Agghoo performs at worst like the hold-out when the risk is convex. The same holds true in classification with the 0--1 risk, with an additional constant factor. For the hold-out, oracle inequalities are known for bounded losses, as in binary classification. We show that similar results can be proved, under appropriate assumptions, for other risk-minimization problems. In particular, we obtain an oracle inequality for regularized kernel regression with a Lipschitz loss, without requiring that the $Y$ variable or the regressors be bounded. Numerical experiments show that aggregation brings a significant improvement over the hold-out and that agghoo is competitive with cross-validation.

A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms

A key challenge in intelligent robotics is creating robots that are capable of directly interacting with the world around them to achieve their goals. The last decade has seen substantial growth in research on the problem of robot manipulation, which aims to exploit the increasing availability of affordable robot arms and grippers to create robots capable of directly interacting with the world to achieve their goals. Learning will be central to such autonomous systems, as the real world contains too much variation for a robot to expect to have an accurate model of its environment, the objects in it, or the skills required to manipulate them, in advance. We aim to survey a representative subset of that research which uses machine learning for manipulation. We describe a formalization of the robot manipulation learning problem that synthesizes existing research into a single coherent framework and highlight the many remaining research opportunities and challenges.

Finite Time LTI System Identification

We address the problem of learning the parameters of a stable linear time invariant (LTI) system with unknown latent space dimension, or order, from a single time--series of noisy input-output data. We focus on learning the best lower order approximation allowed by finite data. Motivated by subspace algorithms in systems theory, where the doubly infinite system Hankel matrix captures both order and good lower order approximations, we construct a Hankel-like matrix from noisy finite data using ordinary least squares. This circumvents the non-convexities that arise in system identification, and allows accurate estimation of the underlying LTI system. Our results rely on careful analysis of self-normalized martingale difference terms that helps bound identification error up to logarithmic factors of the lower bound. We provide a data-dependent scheme for order selection and find an accurate realization of system parameters, corresponding to that order, by an approach that is closely related to the Ho-Kalman subspace algorithm. We demonstrate that the proposed model order selection procedure is not overly conservative, i.e., for the given data length it is not possible to estimate higher order models or find higher order approximations with reasonable accuracy.

Risk-Averse Learning by Temporal Difference Methods with Markov Risk Measures

We propose a novel reinforcement learning methodology where the system performance is evaluated by a Markov coherent dynamic risk measure with the use of linear value function approximations. We construct projected risk-averse dynamic programming equations and study their properties. We propose new risk-averse counterparts of the basic and multi-step methods of temporal differences and we prove their convergence with probability one. We also perform an empirical study on a complex transportation problem.