Semantically consistent Video-to-Audio Generation using Multimodal Language Large Model

arXiv:2404.16305v1 Announce Type: new Abstract: Existing works have made strides in video generation, but the lack of sound effects (SFX) and background music (BGM) hinders a complete and immersive viewer experience. We introduce a novel semantically consistent v ideo-to-audio generation framework, namely SVA, which automatically generates audio semantically consistent with the given video content. The framework harnesses the power of multimodal large language model (MLLM) to understand video semantics from a key frame and generate creative audio schemes, which are then utilized as prompts for text-to-audio models, resulting in video-to-audio generation with natural language as an interface. We show the satisfactory performance of SVA through case study and discuss the limitations along with the future research direction. The project page is available at https://huiz-a.github.io/audio4video.github.io/.

HyDiscGAN: A Hybrid Distributed cGAN for Audio-Visual Privacy Preservation in Multimodal Sentiment Analysis

arXiv:2404.11938v1 Announce Type: new Abstract: Multimodal Sentiment Analysis (MSA) aims to identify speakers' sentiment tendencies in multimodal video content, raising serious concerns about privacy risks associated with multimodal data, such as voiceprints and facial images. Recent distributed collaborative learning has been verified as an effective paradigm for privacy preservation in multimodal tasks. However, they often overlook the privacy distinctions among different modalities, struggling to strike a balance between performance and privacy preservation. Consequently, it poses an intriguing question of maximizing multimodal utilization to improve performance while simultaneously protecting necessary modalities. This paper forms the first attempt at modality-specified (i.e., audio and visual) privacy preservation in MSA tasks. We propose a novel Hybrid Distributed cross-modality cGAN framework (HyDiscGAN), which learns multimodality alignment to generate fake audio and visual features conditioned on shareable de-identified textual data. The objective is to leverage the fake features to approximate real audio and visual content to guarantee privacy preservation while effectively enhancing performance. Extensive experiments show that compared with the state-of-the-art MSA model, HyDiscGAN can achieve superior or competitive performance while preserving privacy.

PRODIS – a speech database and a phoneme-based language model for the study of predictability effects in Polish

arXiv:2404.10112v1 Announce Type: new Abstract: We present a speech database and a phoneme-level language model of Polish. The database and model are designed for the analysis of prosodic and discourse factors and their impact on acoustic parameters in interaction with predictability effects. The database is also the first large, publicly available Polish speech corpus of excellent acoustic quality that can be used for phonetic analysis and training of multi-speaker speech technology systems. The speech in the database is processed in a pipeline that achieves a 90% degree of automation. It incorporates state-of-the-art, freely available tools enabling database expansion or adaptation to additional languages.

SonicVisionLM: Playing Sound with Vision Language Models

arXiv:2401.04394v3 Announce Type: replace Abstract: There has been a growing interest in the task of generating sound for silent videos, primarily because of its practicality in streamlining video post-production. However, existing methods for video-sound generation attempt to directly create sound from visual representations, which can be challenging due to the difficulty of aligning visual representations with audio representations. In this paper, we present SonicVisionLM, a novel framework aimed at generating a wide range of sound effects by leveraging vision-language models(VLMs). Instead of generating audio directly from video, we use the capabilities of powerful VLMs. When provided with a silent video, our approach first identifies events within the video using a VLM to suggest possible sounds that match the video content. This shift in approach transforms the challenging task of aligning image and audio into more well-studied sub-problems of aligning image-to-text and text-to-audio through the popular diffusion models. To improve the quality of audio recommendations with LLMs, we have collected an extensive dataset that maps text descriptions to specific sound effects and developed a time-controlled audio adapter. Our approach surpasses current state-of-the-art methods for converting video to audio, enhancing synchronization with the visuals, and improving alignment between audio and video components. Project page: https://yusiissy.github.io/SonicVisionLM.github.io/

Where Are You From? Let Me Guess! Subdialect Recognition of Speeches in Sorani Kurdish

arXiv:2404.00124v1 Announce Type: new Abstract: Classifying Sorani Kurdish subdialects poses a challenge due to the need for publicly available datasets or reliable resources like social media or websites for data collection. We conducted field visits to various cities and villages to address this issue, connecting with native speakers from different age groups, genders, academic backgrounds, and professions. We recorded their voices while engaging in conversations covering diverse topics such as lifestyle, background history, hobbies, interests, vacations, and life lessons. The target area of the research was the Kurdistan Region of Iraq. As a result, we accumulated 29 hours, 16 minutes, and 40 seconds of audio recordings from 107 interviews, constituting an unbalanced dataset encompassing six subdialects. Subsequently, we adapted three deep learning models: ANN, CNN, and RNN-LSTM. We explored various configurations, including different track durations, dataset splitting, and imbalanced dataset handling techniques such as oversampling and undersampling. Two hundred and twenty-five(225) experiments were conducted, and the outcomes were evaluated. The results indicated that the RNN-LSTM outperforms the other methods by achieving an accuracy of 96%. CNN achieved an accuracy of 93%, and ANN 75%. All three models demonstrated improved performance when applied to balanced datasets, primarily when we followed the oversampling approach. Future studies can explore additional future research directions to include other Kurdish dialects.

Learning to Visually Localize Sound Sources from Mixtures without Prior Source Knowledge

arXiv:2403.17420v1 Announce Type: new Abstract: The goal of the multi-sound source localization task is to localize sound sources from the mixture individually. While recent multi-sound source localization methods have shown improved performance, they face challenges due to their reliance on prior information about the number of objects to be separated. In this paper, to overcome this limitation, we present a novel multi-sound source localization method that can perform localization without prior knowledge of the number of sound sources. To achieve this goal, we propose an iterative object identification (IOI) module, which can recognize sound-making objects in an iterative manner. After finding the regions of sound-making objects, we devise object similarity-aware clustering (OSC) loss to guide the IOI module to effectively combine regions of the same object but also distinguish between different objects and backgrounds. It enables our method to perform accurate localization of sound-making objects without any prior knowledge. Extensive experimental results on the MUSIC and VGGSound benchmarks show the significant performance improvements of the proposed method over the existing methods for both single and multi-source. Our code is available at: https://github.com/VisualAIKHU/NoPrior_MultiSSL

Text-to-Audio Generation Synchronized with Videos

arXiv:2403.07938v1 Announce Type: cross Abstract: In recent times, the focus on text-to-audio (TTA) generation has intensified, as researchers strive to synthesize audio from textual descriptions. However, most existing methods, though leveraging latent diffusion models to learn the correlation between audio and text embeddings, fall short when it comes to maintaining a seamless synchronization between the produced audio and its video. This often results in discernible audio-visual mismatches. To bridge this gap, we introduce a groundbreaking benchmark for Text-to-Audio generation that aligns with Videos, named T2AV-Bench. This benchmark distinguishes itself with three novel metrics dedicated to evaluating visual alignment and temporal consistency. To complement this, we also present a simple yet effective video-aligned TTA generation model, namely T2AV. Moving beyond traditional methods, T2AV refines the latent diffusion approach by integrating visual-aligned text embeddings as its conditional foundation. It employs a temporal multi-head attention transformer to extract and understand temporal nuances from video data, a feat amplified by our Audio-Visual ControlNet that adeptly merges temporal visual representations with text embeddings. Further enhancing this integration, we weave in a contrastive learning objective, designed to ensure that the visual-aligned text embeddings resonate closely with the audio features. Extensive evaluations on the AudioCaps and T2AV-Bench demonstrate that our T2AV sets a new standard for video-aligned TTA generation in ensuring visual alignment and temporal consistency.

sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection with Spiking Neural Networks

arXiv:2403.05772v1 Announce Type: cross Abstract: Speech applications are expected to be low-power and robust under noisy conditions. An effective Voice Activity Detection (VAD) front-end lowers the computational need. Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient. However, SNN-based VADs have yet to achieve noise robustness and often require large models for high performance. This paper introduces a novel SNN-based VAD model, referred to as sVAD, which features an auditory encoder with an SNN-based attention mechanism. Particularly, it provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms. The classifier utilizes Spiking Recurrent Neural Networks (sRNN) to exploit temporal speech information. Experimental results demonstrate that our sVAD achieves remarkable noise robustness and meanwhile maintains low power consumption and a small footprint, making it a promising solution for real-world VAD applications.

Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion Latent Aligners

arXiv:2402.17723v1 Announce Type: cross Abstract: Video and audio content creation serves as the core technique for the movie industry and professional users. Recently, existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry. In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation. We observe the powerful generation ability of off-the-shelf video or audio generation models. Thus, instead of training the giant models from scratch, we propose to bridge the existing strong models with a shared latent representation space. Specifically, we propose a multimodality latent aligner with the pre-trained ImageBind model. Our latent aligner shares a similar core as the classifier guidance that guides the diffusion denoising process during inference time. Through carefully designed optimization strategy and loss functions, we show the superior performance of our method on joint video-audio generation, visual-steered audio generation, and audio-steered visual generation tasks. The project website can be found at https://yzxing87.github.io/Seeing-and-Hearing/

Towards Decoding Brain Activity During Passive Listening of Speech

arXiv:2402.16996v1 Announce Type: new Abstract: The aim of the study is to investigate the complex mechanisms of speech perception and ultimately decode the electrical changes in the brain accruing while listening to speech. We attempt to decode heard speech from intracranial electroencephalographic (iEEG) data using deep learning methods. The goal is to aid the advancement of brain-computer interface (BCI) technology for speech synthesis, and, hopefully, to provide an additional perspective on the cognitive processes of speech perception. This approach diverges from the conventional focus on speech production and instead chooses to investigate neural representations of perceived speech. This angle opened up a complex perspective, potentially allowing us to study more sophisticated neural patterns. Leveraging the power of deep learning models, the research aimed to establish a connection between these intricate neural activities and the corresponding speech sounds. Despite the approach not having achieved a breakthrough yet, the research sheds light on the potential of decoding neural activity during speech perception. Our current efforts can serve as a foundation, and we are optimistic about the potential of expanding and improving upon this work to move closer towards more advanced BCIs, better understanding of processes underlying perceived speech and its relation to spoken speech.