REACT: Two Datasets for Analyzing Both Human Reactions and Evaluative Feedback to Robots Over Time

Recent work in Human-Robot Interaction (HRI) has shown that robots can leverage implicit communicative signals from users to understand how they are being perceived during interactions. For example, these signals can be gaze patterns, facial expressions, or body motions that reflect internal human states. To facilitate future research in this direction, we contribute the REACT database, a collection of two datasets of human-robot interactions that display users' natural reactions to robots during a collaborative game and a photography scenario. Further, we analyze the datasets to show that interaction history is an important factor that can influence human reactions to robots. As a result, we believe that future models for interpreting implicit feedback in HRI should explicitly account for this history. REACT opens up doors to this possibility in the future.

Control-Theoretic Techniques for Online Adaptation of Deep Neural Networks in Dynamical Systems

Deep neural networks (DNNs), trained with gradient-based optimization and backpropagation, are currently the primary tool in modern artificial intelligence, machine learning, and data science. In many applications, DNNs are trained offline, through supervised learning or reinforcement learning, and deployed online for inference. However, training DNNs with standard backpropagation and gradient-based optimization gives no intrinsic performance guarantees or bounds on the DNN, which is essential for applications such as controls. Additionally, many offline-training and online-inference problems, such as sim2real transfer of reinforcement learning policies, experience domain shift from the training distribution to the real-world distribution. To address these stability and transfer learning issues, we propose using techniques from control theory to update DNN parameters online. We formulate the fully-connected feedforward DNN as a continuous-time dynamical system, and we propose novel last-layer update laws that guarantee desirable error convergence under various conditions on the time derivative of the DNN input vector. We further show that training the DNN under spectral normalization controls the upper bound of the error trajectories of the online DNN predictions, which is desirable when numerically differentiated quantities or noisy state measurements are input to the DNN. The proposed online DNN adaptation laws are validated in simulation to learn the dynamics of the Van der Pol system under domain shift, where parameters are varied in inference from the training dataset. The simulations demonstrate the effectiveness of using control-theoretic techniques to derive performance improvements and guarantees in DNN-based learning systems.

Neural Style Transfer with Twin-Delayed DDPG for Shared Control of Robotic Manipulators

Neural Style Transfer (NST) refers to a class of algorithms able to manipulate an element, most often images, to adopt the appearance or style of another one. Each element is defined as a combination of Content and Style: the Content can be conceptually defined as the what and the Style as the how of said element. In this context, we propose a custom NST framework for transferring a set of styles to the motion of a robotic manipulator, e.g., the same robotic task can be carried out in an angry, happy, calm, or sad way. An autoencoder architecture extracts and defines the Content and the Style of the target robot motions. A Twin Delayed Deep Deterministic Policy Gradient (TD3) network generates the robot control policy using the loss defined by the autoencoder. The proposed Neural Policy Style Transfer TD3 (NPST3) alters the robot motion by introducing the trained style. Such an approach can be implemented either offline, for carrying out autonomous robot motions in dynamic environments, or online, for adapting at runtime the style of a teleoperated robot. The considered styles can be learned online from human demonstrations. We carried out an evaluation with human subjects enrolling 73 volunteers, asking them to recognize the style behind some representative robotic motions. Results show a good recognition rate, proving that it is possible to convey different styles to a robot using this approach.

Neural Policy Style Transfer

Style Transfer has been proposed in a number of fields: fine arts, natural language processing, and fixed trajectories. We scale this concept up to control policies within a Deep Reinforcement Learning infrastructure. Each network is trained to maximize the expected reward, which typically encodes the goal of an action, and can be described as the content. The expressive power of deep neural networks enables encoding a secondary task, which can be described as the style. The Neural Policy Style Transfer (NPST) algorithm is proposed to transfer the style of one policy to another, while maintaining the content of the latter. Different policies are defined via Deep Q-Network architectures. These models are trained using demonstrations through Inverse Reinforcement Learning. Two different sets of user demonstrations are performed, one for content and other for style. Different styles are encoded as defined by user demonstrations. The generated policy is the result of feeding a content policy and a style policy to the NPST algorithm. Experiments are performed in a catch-ball game inspired by the Deep Reinforcement Learning classical Atari games; and a real-world painting scenario with a full-sized humanoid robot, based on previous works of the authors. The implementation of three different Q-Network architectures (Shallow, Deep and Deep Recurrent Q-Network) to encode the policies within the NPST framework is proposed and the results obtained in the experiments with each of these architectures compared.

Deep Robot Sketching: An application of Deep Q-Learning Networks for human-like sketching

The current success of Reinforcement Learning algorithms for its performance in complex environments has inspired many recent theoretical approaches to cognitive science. Artistic environments are studied within the cognitive science community as rich, natural, multi-sensory, multi-cultural environments. In this work, we propose the introduction of Reinforcement Learning for improving the control of artistic robot applications. Deep Q-learning Neural Networks (DQN) is one of the most successful algorithms for the implementation of Reinforcement Learning in robotics. DQN methods generate complex control policies for the execution of complex robot applications in a wide set of environments. Current art painting robot applications use simple control laws that limits the adaptability of the frameworks to a set of simple environments. In this work, the introduction of DQN within an art painting robot application is proposed. The goal is to study how the introduction of a complex control policy impacts the performance of a basic art painting robot application. The main expected contribution of this work is to serve as a first baseline for future works introducing DQN methods for complex art painting robot frameworks. Experiments consist of real world executions of human drawn sketches using the DQN generated policy and TEO, the humanoid robot. Results are compared in terms of similarity and obtained reward with respect to the reference inputs

CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction Execution for Robots

This work explores the capacity of large language models (LLMs) to address problems at the intersection of spatial planning and natural language interfaces for navigation. We focus on following complex instructions that are more akin to natural conversation than traditional explicit procedural directives typically seen in robotics. Unlike most prior work where navigation directives are provided as simple imperative commands (e.g., "go to the fridge"), we examine implicit directives obtained through conversational interactions.We leverage the 3D simulator AI2Thor to create household query scenarios at scale, and augment it by adding complex language queries for 40 object types. We demonstrate that a robot using our method CARTIER (Cartographic lAnguage Reasoning Targeted at Instruction Execution for Robots) can parse descriptive language queries up to 42% more reliably than existing LLM-enabled methods by exploiting the ability of LLMs to interpret the user interaction in the context of the objects in the scenario.

Robust Collision Detection for Robots with Variable Stiffness Actuation by Using MAD-CNN: Modularized-Attention-Dilated Convolutional Neural Network

Ensuring safety is paramount in the field of collaborative robotics to mitigate the risks of human injury and environmental damage. Apart from collision avoidance, it is crucial for robots to rapidly detect and respond to unexpected collisions. While several learning-based collision detection methods have been introduced as alternatives to purely model-based detection techniques, there is currently a lack of such methods designed for collaborative robots equipped with variable stiffness actuators. Moreover, there is potential for further enhancing the network's robustness and improving the efficiency of data training. In this paper, we propose a new network, the Modularized Attention-Dilated Convolutional Neural Network (MAD-CNN), for collision detection in robots equipped with variable stiffness actuators. Our model incorporates a dual inductive bias mechanism and an attention module to enhance data efficiency and improve robustness. In particular, MAD-CNN is trained using only a four-minute collision dataset focusing on the highest level of joint stiffness. Despite limited training data, MAD-CNN robustly detects all collisions with minimal detection delay across various stiffness conditions. Moreover, it exhibits a higher level of collision sensitivity, which is beneficial for effectively handling false positives, which is a common issue in learning-based methods. Experimental results demonstrate that the proposed MAD-CNN model outperforms existing state-of-the-art models in terms of collision sensitivity and robustness.

Efficient Gesture Recognition on Spiking Convolutional Networks Through Sensor Fusion of Event-Based and Depth Data

As intelligent systems become increasingly important in our daily lives, new ways of interaction are needed. Classical user interfaces pose issues for the physically impaired and are partially not practical or convenient. Gesture recognition is an alternative, but often not reactive enough when conventional cameras are used. This work proposes a Spiking Convolutional Neural Network, processing event- and depth data for gesture recognition. The network is simulated using the open-source neuromorphic computing framework LAVA for offline training and evaluation on an embedded system. For the evaluation three open source data sets are used. Since these do not represent the applied bi-modality, a new data set with synchronized event- and depth data was recorded. The results show the viability of temporal encoding on depth information and modality fusion, even on differently encoded data, to be beneficial to network performance and generalization capabilities.

Robots as Mental Well-being Coaches: Design and Ethical Recommendations

The last decade has shown a growing interest in robots as well-being coaches. However, insightful guidelines for the design of robots as coaches to promote mental well-being have not yet been proposed. This paper details design and ethical recommendations based on a qualitative analysis drawing on a grounded theory approach, which was conducted with a three-step iterative design process which included user-centered design studies involving robotic well-being coaches, namely: (1) a user-centred design study conducted with 11 participants consisting of both prospective users who had participated in a Brief Solution-Focused Practice study with a human coach, as well as coaches of different disciplines, (2) semi-structured individual interview data gathered from 20 participants attending a Positive Psychology intervention study with the robotic well-being coach Pepper, and (3) a user-centred design study conducted with 3 participants of the Positive Psychology study as well as 2 relevant well-being coaches. After conducting a thematic analysis and a qualitative analysis, we collated the data gathered into convergent and divergent themes, and we distilled from those results a set of design guidelines and ethical considerations. Our findings can inform researchers and roboticists on the key aspects to take into account when designing robotic mental well-being coaches.