A cluster differences unfolding method for large datasets of preference ratings on an interval scale: Minimizing the mean squared centred residuals

Abstract

Clustering and spatial representation methods are often used in combination, to analyse preference ratings when a large number of individuals and/or object is involved. When analysed under an unfolding model, row-conditional linear transformations are usually most appropriate when the goal is to determine clusters of individuals with similar preferences. However, a significant problem with transformations that include both slope and intercept is the occurrence of degenerate solutions. In this paper, we propose a least squares unfolding method that performs clustering of individuals while simultaneously estimating the location of cluster centres and object locations in low-dimensional space. The method is based on minimising the mean squared centred residuals of the preference ratings with respect to the distances between cluster centres and object locations. At the same time, the distances are row-conditionally transformed with optimally estimated slope parameters. It is computationally efficient for large datasets, and does not suffer from the appearance of degenerate solutions. The performance of the method is analysed in an extensive Monte Carlo experiment. It is illustrated for a real data set and the results are compared with those obtained using a two-step clustering and unfolding procedure.

Review of techniques and models used in optical chemical structure recognition in images and scanned documents

Extraction of chemical formulas from images was not in the top priority of Computer Vision tasks for a while. The complexity both on the input and prediction sides has made this task challenging for the conven...

A tutorial on generative adversarial networks with application to classification of imbalanced data

Abstract

A challenge unique to classification model development is imbalanced data. In a binary classification problem, class imbalance occurs when one class, the minority group, contains significantly fewer samples than the other class, the majority group. In imbalanced data, the minority class is often the class of interest (e.g., patients with disease). However, when training a classifier on imbalanced data, the model will exhibit bias towards the majority class and, in extreme cases, may ignore the minority class completely. A common strategy for addressing class imbalance is data augmentation. However, traditional data augmentation methods are associated with overfitting, where the model is fit to the noise in the data. In this tutorial we introduce an advanced method for data augmentation: generative adversarial networks (GANs). The advantages of GANs over traditional data augmentation methods are illustrated using the Breast Cancer Wisconsin study. To promote the adoption of GANs for data augmentation, we present an end-to-end pipeline that encompasses the complete life cycle of a machine learning project along with alternatives and good practices both in the paper and in a separate video. Our code, data, full results and video tutorial are publicly available in the paper's GitHub repository (https://github.com/yuxiaohuang/research/tree/master/gwu/accepted/sam_2021).

Next waves in veridical network embedding*

Abstract

Embedding nodes of a large network into a metric (e.g., Euclidean) space has become an area of active research in statistical machine learning, which has found applications in natural and social sciences. Generally, a representation of a network object is learned in a Euclidean geometry and is then used for subsequent tasks regarding the nodes and/or edges of the network, such as community detection, node classification and link prediction. Network embedding algorithms have been proposed in multiple disciplines, often with domain‐specific notations and details. In addition, different measures and tools have been adopted to evaluate and compare the methods proposed under different settings, often dependent of the downstream tasks. As a result, it is challenging to study these algorithms in the literature systematically. Motivated by the recently proposed PCS framework for Veridical Data Science, we propose a framework for network embedding algorithms and discuss how the principles of predictability, computability, and stability (PCS) apply in this context. The utilization of this framework in network embedding holds the potential to motivate and point to new directions for future research.