Characterising time-on-task effects on oscillatory and aperiodic EEG components and their co-variation with visual task performance.

Fluctuations in oscillatory brain activity have been shown to co-occur with variations in task performance. More recently, part of these fluctuations has been attributed to long-term (>1hr) monotonous trends in the power and frequency of alpha oscillations (8-13 Hz). Here we tested whether these time-on-task changes in EEG activity are limited to activity in the alpha band and whether they are linked to task performance. Thirty-six participants performed 900 trials of a two-alternative forced choice visual discrimination task with confidence ratings. Pre- and post-stimulus spectral power (1-40Hz) and aperiodic (i.e., non-oscillatory) components were compared across blocks of the experimental session and tested for relationships with behavioural performance. We found that time-on-task effects on oscillatory EEG activity were primarily localised within the alpha band, with alpha power increasing and peak alpha frequency decreasing over time, even when controlling for aperiodic contributions. Aperiodic, broadband activity on the other hand did not show time-on-task effects in our data set. Importantly, time-on-task effects in alpha frequency and power explained variability in single-trial reaction times. Moreover, controlling for time-on-task effectively removed the relationships between alpha activity and reaction times. However, time-on-task effects did not affect other EEG signatures of behavioural performance, including post-stimulus predictors of single-trial decision confidence. Therefore, our results dissociate alpha-band brain-behaviour relationships that can be explained away by time-on-task from those that remain after accounting for it - thereby further specifying the potential functional roles of alpha in human visual perception.