Real-time isometric finger extension force estimation based on motor unit discharge information

Objective . The goal of this study was to perform real-time estimation of isometric finger extension force using the discharge information of motor units (MUs). Approach . A real-time electromyogram (EMG) decomposition method based on the fast independent component analysis (FastICA) algorithm was developed to extract MU discharge events from high-density (HD) EMG recordings. The decomposition was first performed offline during an initialization period, and the obtained separation matrix was then applied to new data samples in real-time. Since MU pool discharge probability reflects the neural drive to spinal motoneurons, individual finger forces were estimated based on a firing rate-force model established during the initialization, termed the neural-drive method. The conventional EMG amplitude-based method was used to estimate the forces as a comparison, termed the EMG-amplitude method. Simulated HD-EMG signals were first used to evaluate the accuracy of the real-t...